`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`
${elem} `); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`
${book_segment.title} `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`
${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "iBxpdXakmWRPxBBQ212ZYynyRl1OT4QbJhMQ4iJb4xFS5pDbBlsX2TxOE0J0TlHe"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j
Solutions
Textbooks
`); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(` Solutions ${viewAllHTML} `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+" "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(` Textbooks View All `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "iBxpdXakmWRPxBBQ212ZYynyRl1OT4QbJhMQ4iJb4xFS5pDbBlsX2TxOE0J0TlHe"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "iBxpdXakmWRPxBBQ212ZYynyRl1OT4QbJhMQ4iJb4xFS5pDbBlsX2TxOE0J0TlHe", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
FAQs
Find the derivative of the function.
The derivative (dy/dx) will give you the gradient (slope) of the curve. Find a value of x that makes dy/dx infinite; you're looking for an infinite slope, so the vertical tangent of the curve is a vertical line at this value of x.
What is curve formula? ›
A curve can be represented in a graph using the help of equations. Let's understand it with the help of some examples. The equation y = x2 represents a parabola in the cartesian plane, as shown below. The equation ax2 + by2 = c is the general equation for an ellipse.
What is the rule for vertical tangent lines? ›
The vertical tangent point to a curve occurs when the derivative of the curve is undefined. For example, consider the equation of the unit circle, which is x2+y2=1 x 2 + y 2 = 1 . By observation, the unit circle has vertical tangents at x=1 and x=−1 .
How do you find when a line is tangent to a curve? ›
The tangent to a curve at a given point is a straight line which “just touches” the curve at that point. The gradient of the tangent is equal to the derivative of the curve evaluated at the point where the curve and tangent line meet.
How to find the equation of a curve from dy dx? ›
Since the gradient of the curve at a certain point is found by differentiating the equation of the curve, we can find the equation of the curve by integrating the differential. So, to get the equation we have to integrate dy/dx=(4x-5). Integrating this, we get y=2x2-5x+c.
How to find the coordinates of a tangent to a curve? ›
In order to find the equation of a tangent, we: Differentiate the equation of the curve. Substitute the value into the differentiated equation to find the gradient. Substitute the value into the original equation of the curve to find the y-coordinate.
What is the curve formula? ›
The equation of a curve is y=ax^n, given that the points (2,9) and (3,4) lie on the curve.
How is a curve calculated? ›
A common method: Find the difference between the highest grade in the class and the highest possible score and add that many points. If the highest percentage grade in the class was 88%, the difference is 12%. You can add 12 percentage points to each student's test score.
What is a curve rule? ›
Curved rulers, also known as French curves or fashion curves, are designed specifically for drawing and replicating curves of various shapes and sizes. They come in a range of shapes and sizes, each catering to different types of curves found in garment construction.
Is vertical tangent the same as asymptote? ›
Limit definition
The graph of ƒ has a vertical tangent at x = a if the derivative of ƒ at a is either positive or negative infinity. then ƒ must have a downward-sloping vertical tangent at x = a. In these situations, the vertical tangent to ƒ appears as a vertical asymptote on the graph of the derivative.
A horizontal tangent line is a mathematical feature on a graph, located where a function's derivative is zero. This is because, by definition, the derivative gives the slope of the tangent line. Horizontal lines have a slope of zero.
How do you determine the horizontal and vertical tangent lines of a parametric curve? ›
Horizontal tangents occur when the derivative equals 0 . Vertical tangents occur when the derivative is undefined. Hopefully this helps!
How do you determine whether the tangent line lies above or below the curve? ›
If f′′(a)>0., then we know the graph of f is concave up, and we see the first possibility on the left, where the tangent line lies entirely below the curve. If f′′(a)<0, then we find ourselves in the second situation (from left) where f is concave down and the tangent line lies above the curve.
What is the derivative of a vertical line? ›
A vertical line is not a function and it cannot have a derivative. If you describe the function of x with respect to y, then sure the derivative is dxdy=0. @Got If you want it this way: the derivative is measured as "units codomain per units domain". If the y-axis is your domain, then a vertical line has zero slope.